目录文档-技术白皮书14-EFT.WP.Methods.Inference v1.0

第3章 推理原理与公设


I. 范围与目标

  1. 确立推理域的基础公设 P41-* 与最小方程 S42-*,覆盖风险最小化、校准一致、时基对齐与线下/线上等价性;为第6章在线/离线一致、第7章校准与不确定性、第12章验收评分提供可验证依据。
  2. 目标产出:
    • 可引用的公设与方程编号锚点;
    • 与 EnvLock、Graph(theta)、TS.* 对齐的计量流程 Mx-4*;
    • 通过门 gate.inf 的数学口径与建议阈值字段。
  3. 通过标准:
    • 任一表达含除号或积分均以括号围定并声明路径 gamma(ell) 与测度 d ell;
    • 线下/线上对照先映射到共同时基 ts = alpha + beta * tau_mono;
    • 校准度量给出分桶边界、加权方式与样本数。

II. 术语与符号


III. 公设与最小方程

  1. P41-1 等价推理公设(固定图与环境)
    在固定 Graph(theta) 与 EnvLock 条件下,给定同一 anchor、同一 seed、nondet_guard = true,对任意输入 x,有 run_inference_off(x) = run_inference_on(x);若 nondet_guard = false 且保持 rng_family/seed 一致,则 p_off( y_hat | x ) = p_on( y_hat | x )。
  2. P41-2 时基对齐公设
    线下回放与线上实时必须满足 ts = alpha + beta * tau_mono;任何跨设备/跨域比较先映射到共同时基后再进行窗口对齐与评分。
  3. P41-3 概率单调与守恒公设(校准映射)
    校准映射 g(p) 必单调且保持事件排序:若 p_i >= p_j 则 g(p_i) >= g(p_j);对分桶估计满足总量守恒 Σ_k w_k * g_bar_k = mean( p ),其中 w_k 为桶内权重。
  4. S42-1 风险最小化与偏差-方差分解(平方损失口径)
    • 经验风险:R_emp = ( 1 / N ) * Σ_{i=1..N} L( y_i, y_hat_i )。
    • 正则化 ERM:theta_star = argmin_theta ( R_emp + lambda * Omega(theta) )。
    • 误差分解:E[ ( y_hat - y )^2 ] = ( bias )^2 + variance + sigma_eps2,其中 sigma_eps2 为不可约噪声。
  5. S42-2 概率校准最小方程(ECE/MCE/NLL)
    • ECE = Σ_{k=1..K} w_k * | acc_k - conf_k |,MCE = max_k | acc_k - conf_k |;NLL = - ( 1 / N ) * Σ log p_theta( y_i | x_i )。
    • 分桶需声明边界 {b_0,...,b_K} 与权重 w_k = n_k / N。
  6. S42-3 线下/线上一致性方程
    • delta_offon = ( norm( y_hat_off - y_hat_on ) / norm( y_hat_off ) ),R_infer = 1 - delta_offon;门限示例:delta_offon <= tau_offon。
    • 时序任务应并报谱一致性:delta_psd = ( ∫ | S_xx_off(f) - S_xx_on(f) | df ) / ( ∫ S_xx_off(f) df ),并注明窗口 U_w 与 ENBW。
  7. S42-4 到达时两口径与路径声明(跨卷继承)
    T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell ) 与 T_arr = ( ∫ ( n_eff / c_ref ) d ell ) 并行计算,报告差异 delta_form 并注明 gamma(ell) 与 d ell。

IV. 数据与清单口径


V. 算法与实现绑定

  1. 绑定原型(节选):
    • I40-4 score_predictions(y_true:any, y_pred:any, metrics:dict) -> ScoreReport
    • I40-5 calibrate(runtime:Runtime, method:str, data:any) -> CalibReport
    • I40-7 monitor_drift(stream:any, spec:dict) -> DriftReport
    • I40-10 compare_offline_online(off:any, on:any, policy:dict) -> ConsistencyReport
  2. 伪流程(摘要):
    • 风险最小化:theta_star ← argmin ( R_emp + lambda*Omega );输出 BiasVarReport。
    • 概率校准:q ← g(p),优化 ECE 或 NLL;产出 CalibReport 与 g 的参数。
    • 线下/线上对照:对齐 ts 后计算 delta_offon 与 delta_psd,生成 ConsistencyReport。

VI. 计量流程与运行图


VII. 验证与测试矩阵

  1. 最小用例:
    • 确定性用例:nondet_guard = true,同一 seed 重跑,断言 y_hat 一致(检验 P41-1)。
    • 时基对齐:随机采样窗口,验证 ts = alpha + beta * tau_mono 后 delta_offon 达到门限(检验 P41-2)。
    • 校准一致:在 K 不同分桶方案下比较 ECE 稳健性(检验 P41-3 与 S42-2)。
    • 谱一致性:对时序任务验证 var( x ) ≈ ( ∫ S_xx(f) df ) 与 delta_psd 门限(检验 S42-2 扩展)。
    • 量化切换:fp32 → int8 同等性,记录 accuracy_drop 与 delta_offon。
  2. 边界与极端:
    极低置信样本、长尾类别、缺失特征、动态批尺寸、设备热降频导致的 TS.latency_p95 抬升。

VIII. 交叉引用与依赖


IX. 风险、限制与开放问题


X. 交付件与版本管理

  1. 交付件:
    • Postulates.md:本章 P41-*、S42-* 的最终文本与变更指纹;
    • CalibReport 与 ConsistencyReport(含 {K,{b_k},ECE,MCE,NLL,delta_offon,delta_psd});
    • BiasVarReport(含 bias^2/variance/sigma_eps2);
    • gate.inf 配置(tau_offon,tau_ece,tau_lat,...)与签名 fingerprint。
  2. 版本策略:
    • 任一改变 Graph(theta)、EnvLock、K/{b_k} 或 alpha,beta,均提升次版本并触发 Mx-43 全量回归;
    • 仅更新报告或可视化不触发重新校准,但需滚动 fingerprint 与变更记录(见 附录C)。

版权与许可(CC BY 4.0)

版权声明:除另有说明外,《能量丝理论》(含文本、图表、插图、符号与公式)的著作权由作者(“屠广林”先生)享有。
许可方式:本作品采用 Creative Commons 署名 4.0 国际许可协议(CC BY 4.0)进行许可;在注明作者与来源的前提下,允许为商业或非商业目的进行复制、转载、节选、改编与再分发。
署名格式(建议):作者:“屠广林”;作品:《能量丝理论》;来源:energyfilament.org;许可证:CC BY 4.0。

首次发布: 2025-11-11|当前版本:v5.1
协议链接:https://creativecommons.org/licenses/by/4.0/