目录 / 文档-技术白皮书 / 45-EFT.WP.Data.Pipeline v1.0
I. 章节目的与范围
的规范:批/流/微批的性能画像、水平/垂直扩缩策略与自动扩缩、容量规划与SLA耦合、成本计量与预算约束、压测与剖析方法、导出物与审计;确保与编排/调度/资源、监控与计量章一致。扩缩(scaling) 与 成本(cost)、性能(performance)固化流水线II. 术语与依赖
- 术语:QPS(吞吐)、T_inf(单样本时延)、ρ(利用率)、p50/p95/p99、H/V scaling(水平/垂直扩缩)、micro-batch、autoscale、capacity planning、cost model、egress、spot/on-demand。
- 依赖:契约与导出(《Core.DataSpec v1.0》);单位/量纲与性能计量(《Core.Metrology v1.0》);编排/调度/资源(本卷第10章);监控与可观测(本卷第12章)。
- 数学与符号:内联符号用反引号(如 QPS、T_inf、ρ、p99、λ、μ);含除号/积分/复合算符必须加括号;如涉路径量 T_arr,登记 gamma(ell) 与 d ell;公式/符号/定义禁用中文。
III. 字段与结构(规范性)
performance:
workload:
mode: "batch|stream|micro-batch"
batch_size: 1024
parallelism: {workers: 16, threads_per_worker: 2}
targets:
qps: {value: 5000}
latency_ms: {p50: 5, p95: 20, p99: 50}
utilization_rho: {max: 0.75}
profiling:
tools: ["py-spy","perf","jfr","flamegraph"]
sampling_interval_ms: 50
hotspots: ["io","serialization","shuffle","network"]
pressure_test:
stages: ["ingest","transform","feature","export"]
ramp: {from_qps: 1000, to_qps: 8000, step: 500, dwell_s: 120}
saturation_criteria: ["latency_ms.p99>target*1.2","error_rate>0.01","ρ>0.85"]
optimizations:
batch_tuning: {enable: true, size_candidates: [256,512,1024,2048]}
micro_batch: {enable: true, window_ms: 200, max_rows: 50000}
io: {compression: "zstd", level: 3, page_size_kb: 256}
cpu: {pin_core: true, numa_aware: true}
gc: {strategy: "g1|zgc|shenandoah", heap_gb: 16}
scaling:
strategy: "horizontal|vertical|hybrid"
horizontal:
shard_key: "entity_id|time|partition"
rebalance: "consistent-hash|range"
vertical:
sku_ref: "c8m64|a2-highgpu"
max_sku: "c32m256"
autoscale:
enabled: true
metric: "qps|latency_ms.p95|cpu"
target: 0.7
min_replicas: 4
max_replicas: 64
cooldown_s: 120
cost:
model:
compute: {on_demand_usd_per_h: 0.48, spot_discount: 0.6}
storage: {usd_per_gb_mo: 0.023}
egress: {usd_per_gb: 0.09}
budget:
currency: "USD"
monthly_cap: 5000
alert_thresholds: {warn: 0.8, block: 1.0}
mix:
on_demand_ratio: 0.4
spot_ratio: 0.6
reporting:
window: "P30D"
breakdown: ["compute","storage","egress","observability"]
IV. 性能建模与剖析
- 队列与服务:以 λ(输入速率)与 μ(服务速率)估算利用率 ρ=( λ / μ );当 ρ→1 时延指数增长,需提前扩容或限流。
- 压测与饱和点:采用阶梯加压(ramp),记录 QPS–latency 曲线与 p99 趋势;以饱和准则判定瓶颈(CPU/IO/网络/锁/GC)。
- 热点定位:火焰图/追踪关联日志,按“CPU→内存→IO→网络”顺序排查;序列化、shuffle 与远程调用优先优化。
- 批/微批调优:通过 batch_size 与 window_ms 平衡吞吐-时延;确保质量门与SLA不受影响。
V. 扩缩策略与弹性
- 水平扩缩(H):通过 shard_key 切分,选择 consistent-hash|range 以降低移动成本;保留热键保护与倾斜修正。
- 垂直扩缩(V):选择更高 sku_ref(CPU/内存/GPU/存储IOPS);评估边际收益并避免NUMA瓶颈。
- 混合策略:先V后H或先H后V,以SLA与预算为约束进行多目标优化。
- 自动扩缩:以 metric(如 qps/latency_ms.p95/cpu)为触发,对 target(目标利用率/时延阈)闭环调节;设置 min/max_replicas 与 cooldown_s 防抖。
VI. 成本计量与预算
- 成本模型:按 compute/storage/egress/observability 分项;计算侧支持**按需/竞价(spot)**混合;记录折扣与中断策略。
- 预算约束:当累计成本达 warn(80%)告警;达 block(100%)触发限流/禁止扩容/降级策略。
- 性价比评估:输出 usd_per_kqps、usd_per_mrow 等单位成本指标,纳入决策。
VII. 计量与单位(SI)
- 性能与资源:QPS(1/s)、T_inf(ms {p50,p95,p99})、ρ(—)、net_mbps、size_bytes;
- 强制:metrology:{units:"SI", check_dim:true};合成/比较前先做单位归一;图表与报告统一量纲。
- 路径量:如性能测试涉及 T_arr 相关算子,需登记:delta_form、path="gamma(ell)"、measure="d ell",并采用以下等价式之一并通过 check_dim:
- T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )
- T_arr = ( ∫ ( n_eff / c_ref ) d ell )。
VIII. 机器可读片段(可直接嵌入)
performance:
workload: {mode:"micro-batch", batch_size:2048, parallelism:{workers:32, threads_per_worker:2}}
targets: {qps:{value:9000}, latency_ms:{p50:5,p95:20,p99:40}, utilization_rho:{max:0.75}}
profiling:{tools:["perf","flamegraph"], sampling_interval_ms:50, hotspots:["serialization","network"]}
pressure_test:{stages:["transform","feature","export"], ramp:{from_qps:2000,to_qps:12000,step:1000,dwell_s:120},
saturation_criteria:["latency_ms.p99>48","ρ>0.85"]}
scaling:
strategy: "hybrid"
horizontal: {shard_key:"entity_id", rebalance:"consistent-hash"}
vertical: {sku_ref:"c16m128", max_sku:"c32m256"}
autoscale: {enabled:true, metric:"latency_ms.p95", target:18, min_replicas:8, max_replicas:64, cooldown_s:120}
cost:
model: {compute:{on_demand_usd_per_h:0.52, spot_discount:0.55}, storage:{usd_per_gb_mo:0.023}, egress:{usd_per_gb:0.09}}
budget:{currency:"USD", monthly_cap:8000, alert_thresholds:{warn:0.8, block:1.0}}
mix: {on_demand_ratio:0.5, spot_ratio:0.5}
reporting:{window:"P30D", breakdown:["compute","storage","egress","observability"]}
metrology:{units:"SI", check_dim:true}
IX. Lint 规则(节选,规范性)
lint_rules:
- id: PERF.TARGETS_DEFINED
when: "$.performance.targets"
assert: "has_keys(qps, latency_ms, utilization_rho)"
level: error
- id: PERF.RAMP_VALID
when: "$.performance.pressure_test.ramp"
assert: "value.from_qps > 0 and value.to_qps > value.from_qps and value.step > 0"
level: error
- id: SCALE.AUTOSCALE_BOUNDS
when: "$.scaling.autoscale"
assert: "value.enabled == false or (value.min_replicas >= 1 and value.max_replicas >= value.min_replicas)"
level: error
- id: COST.BUDGET_DEFINED
when: "$.cost.budget"
assert: "has_keys(currency, monthly_cap) and value.monthly_cap > 0"
level: error
- id: METROLOGY.SI_AND_CHECKDIM
when: "$.metrology"
assert: "units == 'SI' and check_dim == true"
level: error
X. 导出清单与报告
export_manifest:
version: "v1.0"
artifacts:
- {path:"perf/qps_latency_curve.csv", sha256:"..."}
- {path:"perf/flamegraph.svg", sha256:"..."}
- {path:"scaling/autoscale_history.csv", sha256:"..."}
- {path:"cost/monthly_breakdown.csv", sha256:"..."}
- {path:"capacity/plan.yaml", sha256:"..."}
references:
- "EFT.WP.Core.DataSpec v1.0:EXPORT"
- "EFT.WP.Core.Metrology v1.0:check_dim"
XI. 本章合规自检
- 已定义目标与画像:QPS/latency_ms/ρ 目标明确,压测/剖析流程可复现,热点定位有证据。
- 扩缩策略与边界完备:H/V/混合策略与 autoscale 参数合理;与第10章调度/资源协同。
- 成本模型、预算与告警阈值清晰;单位成本与资源利用可追溯。
- 计量采用 SI 且 check_dim=true;如涉 T_arr 已登记 delta_form/path/measure 并通过校核。
- 导出清单列出性能曲线/火焰图/扩缩历史/成本分解/容量计划并具 sha256,满足发布门槛。
版权与许可(CC BY 4.0)
版权声明:除另有说明外,《能量丝理论》(含文本、图表、插图、符号与公式)的著作权由作者(“屠广林”先生)享有。
许可方式:本作品采用 Creative Commons 署名 4.0 国际许可协议(CC BY 4.0)进行许可;在注明作者与来源的前提下,允许为商业或非商业目的进行复制、转载、节选、改编与再分发。
署名格式(建议):作者:“屠广林”;作品:《能量丝理论》;来源:energyfilament.org;许可证:CC BY 4.0。
首次发布: 2025-11-11|当前版本:v5.1
协议链接:https://creativecommons.org/licenses/by/4.0/