目录文档-技术白皮书45-EFT.WP.Data.Pipeline v1.0

第13章 性能、成本与扩缩


I. 章节目的与范围

的规范:批/流/微批的性能画像、水平/垂直扩缩策略与自动扩缩、容量规划与SLA耦合、成本计量与预算约束、压测与剖析方法、导出物与审计;确保与编排/调度/资源、监控与计量章一致。扩缩(scaling)成本(cost)性能(performance)固化流水线

II. 术语与依赖


III. 字段与结构(规范性)

performance:

workload:

mode: "batch|stream|micro-batch"

batch_size: 1024

parallelism: {workers: 16, threads_per_worker: 2}

targets:

qps: {value: 5000}

latency_ms: {p50: 5, p95: 20, p99: 50}

utilization_rho: {max: 0.75}

profiling:

tools: ["py-spy","perf","jfr","flamegraph"]

sampling_interval_ms: 50

hotspots: ["io","serialization","shuffle","network"]

pressure_test:

stages: ["ingest","transform","feature","export"]

ramp: {from_qps: 1000, to_qps: 8000, step: 500, dwell_s: 120}

saturation_criteria: ["latency_ms.p99>target*1.2","error_rate>0.01","ρ>0.85"]

optimizations:

batch_tuning: {enable: true, size_candidates: [256,512,1024,2048]}

micro_batch: {enable: true, window_ms: 200, max_rows: 50000}

io: {compression: "zstd", level: 3, page_size_kb: 256}

cpu: {pin_core: true, numa_aware: true}

gc: {strategy: "g1|zgc|shenandoah", heap_gb: 16}

scaling:

strategy: "horizontal|vertical|hybrid"

horizontal:

shard_key: "entity_id|time|partition"

rebalance: "consistent-hash|range"

vertical:

sku_ref: "c8m64|a2-highgpu"

max_sku: "c32m256"

autoscale:

enabled: true

metric: "qps|latency_ms.p95|cpu"

target: 0.7

min_replicas: 4

max_replicas: 64

cooldown_s: 120

cost:

model:

compute: {on_demand_usd_per_h: 0.48, spot_discount: 0.6}

storage: {usd_per_gb_mo: 0.023}

egress: {usd_per_gb: 0.09}

budget:

currency: "USD"

monthly_cap: 5000

alert_thresholds: {warn: 0.8, block: 1.0}

mix:

on_demand_ratio: 0.4

spot_ratio: 0.6

reporting:

window: "P30D"

breakdown: ["compute","storage","egress","observability"]


IV. 性能建模与剖析


V. 扩缩策略与弹性


VI. 成本计量与预算


VII. 计量与单位(SI)

  1. 性能与资源:QPS(1/s)、T_inf(ms {p50,p95,p99})、ρ(—)、net_mbps、size_bytes;
  2. 强制:metrology:{units:"SI", check_dim:true};合成/比较前先做单位归一;图表与报告统一量纲。
  3. 路径量:如性能测试涉及 T_arr 相关算子,需登记:delta_form、path="gamma(ell)"、measure="d ell",并采用以下等价式之一并通过 check_dim:
    • T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )
    • T_arr = ( ∫ ( n_eff / c_ref ) d ell )。

VIII. 机器可读片段(可直接嵌入)

performance:

workload: {mode:"micro-batch", batch_size:2048, parallelism:{workers:32, threads_per_worker:2}}

targets: {qps:{value:9000}, latency_ms:{p50:5,p95:20,p99:40}, utilization_rho:{max:0.75}}

profiling:{tools:["perf","flamegraph"], sampling_interval_ms:50, hotspots:["serialization","network"]}

pressure_test:{stages:["transform","feature","export"], ramp:{from_qps:2000,to_qps:12000,step:1000,dwell_s:120},

saturation_criteria:["latency_ms.p99>48","ρ>0.85"]}

scaling:

strategy: "hybrid"

horizontal: {shard_key:"entity_id", rebalance:"consistent-hash"}

vertical: {sku_ref:"c16m128", max_sku:"c32m256"}

autoscale: {enabled:true, metric:"latency_ms.p95", target:18, min_replicas:8, max_replicas:64, cooldown_s:120}

cost:

model: {compute:{on_demand_usd_per_h:0.52, spot_discount:0.55}, storage:{usd_per_gb_mo:0.023}, egress:{usd_per_gb:0.09}}

budget:{currency:"USD", monthly_cap:8000, alert_thresholds:{warn:0.8, block:1.0}}

mix: {on_demand_ratio:0.5, spot_ratio:0.5}

reporting:{window:"P30D", breakdown:["compute","storage","egress","observability"]}

metrology:{units:"SI", check_dim:true}


IX. Lint 规则(节选,规范性)

lint_rules:

- id: PERF.TARGETS_DEFINED

when: "$.performance.targets"

assert: "has_keys(qps, latency_ms, utilization_rho)"

level: error

- id: PERF.RAMP_VALID

when: "$.performance.pressure_test.ramp"

assert: "value.from_qps > 0 and value.to_qps > value.from_qps and value.step > 0"

level: error

- id: SCALE.AUTOSCALE_BOUNDS

when: "$.scaling.autoscale"

assert: "value.enabled == false or (value.min_replicas >= 1 and value.max_replicas >= value.min_replicas)"

level: error

- id: COST.BUDGET_DEFINED

when: "$.cost.budget"

assert: "has_keys(currency, monthly_cap) and value.monthly_cap > 0"

level: error

- id: METROLOGY.SI_AND_CHECKDIM

when: "$.metrology"

assert: "units == 'SI' and check_dim == true"

level: error


X. 导出清单与报告

export_manifest:

version: "v1.0"

artifacts:

- {path:"perf/qps_latency_curve.csv", sha256:"..."}

- {path:"perf/flamegraph.svg", sha256:"..."}

- {path:"scaling/autoscale_history.csv", sha256:"..."}

- {path:"cost/monthly_breakdown.csv", sha256:"..."}

- {path:"capacity/plan.yaml", sha256:"..."}

references:

- "EFT.WP.Core.DataSpec v1.0:EXPORT"

- "EFT.WP.Core.Metrology v1.0:check_dim"


XI. 本章合规自检


版权与许可(CC BY 4.0)

版权声明:除另有说明外,《能量丝理论》(含文本、图表、插图、符号与公式)的著作权由作者(“屠广林”先生)享有。
许可方式:本作品采用 Creative Commons 署名 4.0 国际许可协议(CC BY 4.0)进行许可;在注明作者与来源的前提下,允许为商业或非商业目的进行复制、转载、节选、改编与再分发。
署名格式(建议):作者:“屠广林”;作品:《能量丝理论》;来源:energyfilament.org;许可证:CC BY 4.0。

首次发布: 2025-11-11|当前版本:v5.1
协议链接:https://creativecommons.org/licenses/by/4.0/