目录 / 文档-技术白皮书 / 49-误差预算卡 Template v1.0
I. 目的与范围(Purpose & Scope)
- 汇集误差预算与不确定度交付所需的表单、清单、机读模板与发布骨架,与第3–11章口径一致;引用采用“卷名 + 版本 + 锚点(P/S/M/I)”。
- 涉及路径量(到达时/相位)时,正文显式 gamma(ell) 与测度 d ell,并在数据/元数据记录 delta_form ∈ {general, factored};发布要求 p_dim = 1.0。
II. 附录目录索引(Index)
A. 误差预算表 error_budget.csv(表头)
B. 不确定度区间表 uncertainty_intervals.csv(表头)
C. 合规对照表 compliance_table.csv(表头)
D. 报告清单 report_manifest.yaml
E. 协方差配置 cov_config.yaml / 协方差块结构 cov_blocks.json
F. Δ法配置 delta_config.yaml / MC 配置 mc_config.yaml / 自举配置 bootstrap_config.yaml
G. 样本量与功效 power_plan.yaml / 结果摘要 sample_size_report.md
H. UQ-DoE 设计 uq_doe.yaml / 敏感度报告 sensitivity_report.md / 表 sensitivity_table.csv
I. 质量门配置 gates.yaml / 阈值映射 gate_map.yaml / 回退策略 fallbacks.yaml
J. 引用注册表 references.yml
K. 审计轨迹示例 audit.jsonl(单行)
L. 发布版目录结构与一页式发布自检清单
III. 表单与模板(可直接落库)
A. error_budget.csv(表头与示例行)
source,symbol,unit,type,estimate,distribution,correlation,gate,see[]
TIM-01,δt_abs,s,A,2.5e-8,normal,"corr:with Δτ_ch",G5,"Metrology.Sync v1.0:PPS"
PTH-01,u(d ell),m,B,5.0e-4,uniform,"kernel:exp(Lc=25m)",G3,"Core.DataSpec v1.0:TARR"
MED-01,u(n_eff),1,A/B,3.0e-3,gaussian,"kernel:exp(Lc=50m)",G4,"Core.Equations v1.1:S20-1"
B. uncertainty_intervals.csv(发布表)
target,point,lower,upper,unit,method,coverage,notes
T_arr,1.23e-8,9.9e-9,1.47e-8,s,delta,"k=2 (95%)","Σ from exp kernel; delta_form=general"
Phi,0.035,0.028,0.043,rad,mc,"quantile [2.5,97.5]%","B=10000; aligned window"
r_phi,0.72,0.61,0.80,1,bootstrap,"Fisher-z 95%","stratified by device"
C. compliance_table.csv(发布表)
metric,point,interval_or_band,gate,threshold,decision,notes
DeltaT_arr,1.2e-9,"±U(k=2)",G4/G5,"<= tau_T_s",pass,"dim OK; freshness OK"
r_phi,0.72,"[0.61,0.80]",G6,">= r_phi_min",pass,"Fisher-z back-transform"
epsilon_flux,0.006,"P95=0.011",G7,"<= 0.02",pass,"paraxial guard satisfied"
Q_res,0.13,"band in [0,0.2]",G6,"in-band",pass,"robust surrogate used"
p_dim,1.0,"—",G4,"= 1.0",pass,"check_dim_report attached"
D. report_manifest.yaml(报告清单)
version: "1.0.0"
bundle:
tables:
- "tables/error_budget.csv"
- "tables/uncertainty_intervals.csv"
- "tables/compliance_table.csv"
figures:
- "figs/dashboard.pdf"
- "figs/residual_ba.pdf"
- "figs/path_profile.svg"
- "figs/sobol_bar.pdf"
reports:
- "reports/check_dim_report.json"
- "reports/audit.jsonl"
metadata:
dataset_id: "ptn-demo"
method_version: "2.0.0"
anchor_coverage_min: 0.90
see:
- "EFT.WP.Core.Equations v1.1:S20-1"
- "EFT.WP.Core.Metrology v1.0:check_dim"
E. cov_config.yaml(协方差配置)
version: "1.0.0"
domains: ["path","time","channel"]
kernels:
path: { name: "exp", params: { sigma2: 3.0e-3, L_c_m: 25.0 } }
time: { name: "ar1", params: { sigma2: 1.0e-4, phi: 0.92 } }
channel: { name: "block_toeplitz", params: { rho_matrix: [[1,0.35],[0.35,1]] } }
nonstationary:
segmentation:
path:
- { start: 0.0, end: 120.0, L_c_m: 20.0 }
- { start: 120.0, end: 300.0, L_c_m: 35.0 }
numerics: { jitter: 1.0e-6, method: "chol_block" }
see:
- "EFT.WP.Core.Equations v1.1:S20-1"
- "EFT.WP.Core.Metrology v1.0:check_dim"
F. cov_blocks.json(块结构示意)
{
"path_indices": [0, 300],
"time_indices": [0, 400],
"channel_blocks": 2,
"structures": ["toeplitz", "ar1", "block"],
"jitter": 1e-6
}
G. delta_config.yaml / mc_config.yaml / bootstrap_config.yaml
# delta_config.yaml
version: "1.0.0"
model:
f: "T_arr = ∫ ( n_eff / c_ref ) d ell"
jacobian: "auto" # or "manual"
covariance: { from: "cov_config.yaml" }
coverage: { type: "confidence", k: 2 }
see:
- "EFT.WP.Core.Equations v1.1:S20-1"
- "EFT.WP.Core.Metrology v1.0:check_dim"
# mc_config.yaml
version: "1.0.0"
draws: 10000
sampler: "chol" # chol|spectral|state-space
seed: 20250924
covariance: { from: "cov_config.yaml" }
targets: ["T_arr","Phi","ε_flux"]
summaries: ["mean","std","p2.5","p50","p97.5"]
# bootstrap_config.yaml
version: "1.0.0"
B: 10000
scheme: "stratified" # paired|stratified|residual
align_phase_window: true
strata: ["batch","device","region"]
robust: { loss: "huber", delta: 1.345 }
targets: ["DeltaT_arr","r_phi","ε_flux"]
H. power_plan.yaml / sample_size_report.md
version: "1.0.0"
targets:
- { name: "DeltaT_arr", type: "means_diff", alpha: 0.01, power: 0.90, effect_size_d: 0.35, design: { paired: true, deff: 1.00 } }
- { name: "r_phi", type: "correlation", alpha: 0.01, power: 0.90, r_target: 0.60, fisher_z: true }
- { name: "epsilon_flux", type: "threshold_rate", alpha: 0.05, power: 0.80, p0: 0.15, p1: 0.07 }
robust: { loss: "huber", inflate_factor: 1.20 }
correlation: { path: { kernel: "exp", L_c_m: 25.0 } }
sequential: { scheme: "obrien_fleming", looks: 2 }
# Sample Size & Power Report
- Targets and effect sizes; alpha/power; DEFF & ν_eff.
- Methods: z-approx / Fisher-z / exact-proportion; robust inflate ×1.20.
- Outputs: N per group/stratum; sequential spending; bootstrap power curve.
I. uq_doe.yaml / sensitivity_report.md / sensitivity_table.csv
version: "1.0.0"
targets: ["T_arr","Phi","r_phi","ε_flux"]
design:
sampler: "lhs" # lhs|sobol|halton
n_init: 200
strata: ["batch","device","region"]
path_refine: { metric: "grad_n_eff", rule: "adaptive_subdivide" }
screening: { method: "morris", levels: 6, trajectories: 12 }
global: { method: "sobol", draws: 5000, robust: { variance: "huber", delta: 1.345 } }
sequential: { scheme: "obrien_fleming", looks: 2 }
see:
- "EFT.WP.Core.Equations v1.1:S20-1"
- "EFT.WP.Core.Metrology v1.0:check_dim"
# UQ-DoE Sensitivity Report
- Design: LHS n=200; strata={batch,device,region}; adaptive path refine.
- Screening: Morris μ,σ; Global: Sobol S/ST (robust variance).
- Results: top drivers; power vs N_eff; decisions & gate mapping.
factor,S_i,ST_i,EE_mean,EE_sd,rank,notes
c_ref,0.18,0.26,0.09,0.04,2,"Delta-form=general"
lambda_ref,0.22,0.31,0.12,0.06,1,"phase-aligned window"
n_eff_profile,0.15,0.44,0.20,0.18,3,"path-kernel exp L_c=25 m"
J. gates.yaml / gate_map.yaml / fallbacks.yaml
# gates.yaml
version: "1.0.0"
gates:
G1: { schema: true }
G2: { anchor_coverage_min: 0.90, forbid_external_links: true }
G3: { path_min_len: 2, require_sync: true }
G4: { p_dim: 1.0, units: { T_arr: "s", Phi: "rad" } }
G5: { tau_calib_s_max: 86400, clock_state: "locked" }
G6: { Q_res_band: [0.0, 0.2], robust_surrogate: true }
G7: { epsilon_flux_guard_p95: 0.02 }
G8: { unique_record_id: true, unique_checksum: true }
# gate_map.yaml
version: "1.0.0"
thresholds: { tau_T_s: "3*u(T_arr)", r_phi_min: 0.60 }
decision:
DeltaT_arr: "abs(DeltaT_arr)+U_T <= tau_T_s"
r_phi: "LB_r >= r_phi_min"
epsilon_flux: "P95_epsilon <= epsilon_flux_guard_p95"
labels: { restricted: "[Restricted]" }
# fallbacks.yaml
version: "1.0.0"
triggers:
SYNC: ["clock_unlocked","abs_t_over","skew_over","allan_over"]
DIM: ["p_dim_fail","check_dim_fail"]
SMP: ["fs_below_nyquist","Delta_ell_over","path_len_short","path_desync"]
PAX: ["theta_over","coherence_fail"]
NOISE: ["Q_res_over","flux_nonconserve"]
CALIB: ["tau_calib_expired","u_theta_over"]
CITE: ["ver_missing","anchor_coverage_low","external_link_found"]
INTG: ["record_dup","checksum_dup","audit_missing"]
actions:
sync_fallback: ["GNSS","PTP","NTP"]
switch_fullwave: true
segment_adapt: { T_coh: "shrink", L_coh: "shrink", B_coh: "increase" }
robust_substitute: ["huber","quantile"]
recalibrate: true
labels: { restricted: "[Restricted]" }
K. references.yml(引用注册表)
version: "1.0.0"
refs:
core_terms_p10_3: "EFT.WP.Core.Terms v1.0:P10-3"
core_eq_s20_1: "EFT.WP.Core.Equations v1.1:S20-1"
core_met_checkdim: "EFT.WP.Core.Metrology v1.0:check_dim"
core_dataspec_tarr: "EFT.WP.Core.DataSpec v1.0:TARR"
methods_bench: "Data.Benchmarks v1.0:PROTO"
L. audit.jsonl(单行示例)
IV. 发布目录结构(建议)
PTN_EXPORT/
manifest.yaml
tables/
error_budget.csv
uncertainty_intervals.csv
compliance_table.csv
figs/
dashboard.pdf
residual_ba.pdf
path_profile.svg
sobol_bar.pdf
reports/
check_dim_report.json
audit.jsonl
configs/
cov_config.yaml
delta_config.yaml
mc_config.yaml
bootstrap_config.yaml
power_plan.yaml
uq_doe.yaml
results.md
SIGNATURE.asc
V. 一页式发布自检清单(Publish Checklist)
- 文内与数据 see[]/references[] 采用“卷名+版本+锚点”,锚点直指率 ≥ 90%,无外链/别名。
- 路径量显式 gamma(ell)、d ell;delta_form 已记录;len(path) ≥ 2;p_dim = 1.0。
- 与阈值对齐:τ_T / r_phi_min / ε_flux guard / Q_res band 判定清晰。
- 表格三件套与主要图表已生成,图注含单位、覆盖水平与 see[]/version。
- check_dim_report.json 与 audit.jsonl 已更新;checksum 唯一且签名完成。
- 若处于 [Restricted],全部图表标题追加标签并列出触发项,仅发布定性结果与诊断图。
版权与许可(CC BY 4.0)
版权声明:除另有说明外,《能量丝理论》(含文本、图表、插图、符号与公式)的著作权由作者(“屠广林”先生)享有。
许可方式:本作品采用 Creative Commons 署名 4.0 国际许可协议(CC BY 4.0)进行许可;在注明作者与来源的前提下,允许为商业或非商业目的进行复制、转载、节选、改编与再分发。
署名格式(建议):作者:“屠广林”;作品:《能量丝理论》;来源:energyfilament.org;许可证:CC BY 4.0。
首次发布: 2025-11-11|当前版本:v5.1
协议链接:https://creativecommons.org/licenses/by/4.0/