目录文档-技术白皮书(V5.05)54-复现实验清单 Template v1.0

第8章 种子、随机性与确定性


I. 目标与范围(Purpose & Scope)


II. 输入与依赖(Inputs & Dependencies)


III. 随机源策略(Seed Policy)


IV. 确定性与非确定算子(Determinism & Non-Determinism)


V. 路径与相位对齐(Path & Phase Alignment)


VI. 容忍度与等价判定(Tolerances & Equivalence)


VII. 并行与分布式(Parallel & Distributed)


VIII. 机读配置(Machine-Readable Configs)
A. seed_policy.yaml

version: "1.0.0"

seed_global: 20250924

frameworks:

torch:

use_deterministic_algorithms: true

cudnn: { deterministic: true, benchmark: false }

numpy: { seed: 20250924 }

random: { seed: 20250924 }

parallel:

threads: 8

streams_per_gpu: 2

ddp:

backend: "nccl"

bucket_cap_mb: 25

seed_per_rank: "H(seed_global, rank)"

ops:

allowlist: ["conv2d_deterministic","matmul_stable","sort_stable"]

denylist: ["conv_winograd_nondet","atomic_reduction_nondet"]

time:

forbid_wallclock_random: true

B. determinism_matrix.yaml

version: "1.0.0"

platforms:

- { os: "Ubuntu-22.04", cuda: "12.2", driver: "535.146.02", torch: "2.2.2+cu122" }

checks:

bitwise_equal: ["same_platform"]

ulp_tolerance: { cross_platform: 8 }

metrics_tolerance:

mae: 1.0e-4

auc: 2.0e-3

latency_p95_s: 5.0e-3

coverage: { mode: "k", k: 2 }


C. rng_state.json(示例)

JSON json
{
  "torch_cpu": "...",
  "torch_cuda": [ "...rank0...", "...rank1..." ],
  "numpy": "...",
  "python_random": "..."
}

IX. 质量门映射(Gate Mapping)


X. 反例与修正(Anti-Patterns & Fixes)


XI. 交叉引用(Cross-References)


XII. 勾选清单(Checklist)


版权与许可:除另有说明外,《能量丝理论》(含文本、图表、插图、符号与公式)的著作权由作者(屠广林)享有。
许可方式(CC BY 4.0):在注明作者与来源的前提下,允许复制、转载、节选、改编与再分发。
署名格式(建议):作者:屠广林|作品:《能量丝理论》|来源:energyfilament.org|许可证:CC BY 4.0
验证召集: 作者独立自费、无雇主无资助;下一阶段将优先在最愿意公开讨论、公开复现、公开挑错的环境中推进落地,不限国家。欢迎各国媒体与同行抓住窗口组织验证,并与我们联系。
版本信息: 首次发布:2025-11-11 | 当前版本:v6.0+5.05