目录文档-技术白皮书43-EFT.WP.Data.DatasetCards v1.0

第10章 不确定度与误差预算


I. 章节目的与范围

;跨卷引用采用“卷名+版本+锚点”。 禁用中文固化不确定度来源、分类、传播与合成规则;给出覆盖因子、相关性与报告口径;确保单位/量纲一致、可复现与可审计。所有数学表达使用反引号与括号,

II. 术语与依赖


III. 字段与结构(规范性)

uncertainty:

model: "GUM" # 参考口径:GUM-like / bayesian

components: # 误差成分清单(系统/随机)

- name: "thermal"

type: "random" # random | systematic

value: 2.1

unit: "K"

distribution: "normal" # normal | uniform | triangular | student-t | user

coverage: {k: 1.0} # 单值标准不确定度时 k=1

corr_group: null # 相关分组名;null=独立

method: "repeatability" # 评定方法

note: "receiver noise"

- name: "cal_gain"

type: "systematic"

value: 0.8

unit: "%"

distribution: "normal"

coverage: {k: 2.0}

corr_group: "instrument"

method: "cal-lab"

correlation:

posture: "groups" # groups | covariance

groups:

- name: "instrument"

pairwise: "rho=0.6" # 简写;或在 covariance.Sigma 指定

covariance:

Sigma: [] # 可选:完整协方差矩阵(标准化或物理单位)

propagation:

rule: "rss" # rss | linear | bayesian | montecarlo

linearization: "first-order" # 线性化方法(如适用)

samples: 0 # Monte Carlo 样本数(>0 启用)

coverage_policy:

target_p: 0.95 # 目标覆盖概率(默认 95%)

k: 2.0 # 对应覆盖因子(近似或由分布求解)

report:

significant_figures: 3

unit_consistency: true

see:

- "EFT.WP.Core.Metrology v1.0:check_dim"

- "EFT.WP.Core.DataSpec v1.0:EXPORT"

(uncertainty 为条件必填:当数据含测量或推断量时必须存在;导出引用体现在 export_manifest.references[]。)


IV. 成分分类与最小清单


V. 传播与合成规则


VI. 相关性处理


VII. 与路径依赖量 T_arr 的耦合(如适用)

  1. 等价表达
    • T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )
    • T_arr = ( ∫ ( n_eff / c_ref ) d ell )
  2. 传播:离散化路径 γ(ell) 为段 ℓ_k:
    u^2(T_arr) = ( Σ ( ( ∂T_arr / ∂n_eff,k )^2 u^2(n_eff,k) ) + 2 Σ_{i<j} ( ∂T_arr/∂n_i )( ∂T_arr/∂n_j ) cov(n_i,n_j) + ( ∂T_arr/∂c_ref )^2 u^2(c_ref ) )。
  3. 登记:在卡片 path_dependence 中提供 delta_form/path/measure,并在 uncertainty.components[] 对应 n_eff、c_ref 与介质改正项的来源与相关性。

VIII. 报告与呈现规范


IX. 与质量门的联动


X. 机器可读片段(可直接嵌入)

uncertainty:

model: "GUM"

components:

- {name:"thermal", type:"random", value:2.1, unit:"K", distribution:"normal", coverage:{k:1.0}}

- {name:"cal_gain", type:"systematic", value:0.8, unit:"%", distribution:"normal", coverage:{k:2.0}, corr_group:"instrument"}

correlation: {posture:"groups", groups:[{name:"instrument", pairwise:"rho=0.6"}]}

propagation: {rule:"linear", linearization:"first-order", samples:0}

coverage_policy: {target_p:0.95, k:2.0}

report: {significant_figures:3, unit_consistency:true}

path_dependence:

applies_to: ["T_arr"]

delta_form: "const-factor"

path: "gamma(ell)"

measure: "d ell"

see:

- "EFT.WP.Core.Equations v1.1:S20-1"

- "EFT.WP.Core.Metrology v1.0:check_dim"

(see[] 写法与导出清单一致,携带“卷名+版本+锚点”。)


XI. 示例片段(报告表格)

uncertainty_report:

combined:

u_c: 0.37

unit: "ms"

coverage: {k: 2.0, U: 0.74, target_p: 0.95}

breakdown:

- {name:"thermal", type:"random", contrib:0.29, unit:"ms", share:"61%"}

- {name:"cal_gain", type:"systematic", contrib:0.21, unit:"ms", share:"39%"}

sensitivity:

- {wrt:"n_eff", |df/dx|: "1.8e-9 s", note:"path-avg"}

- {wrt:"c_ref", |df/dx|: "1.2e-9 s", note:"const-factor"}


XII. 与导出清单的耦合

export_manifest:

references:

- "EFT.WP.Core.DataSpec v1.0:EXPORT"

- "EFT.WP.Core.Metrology v1.0:check_dim"

- "EFT.WP.Core.Equations v1.1:S20-1"

artifacts:

- {path:"uncertainty/derivation.md", sha256:"..."}

- {path:"uncertainty/covariance.npy", sha256:"..."}

(导出物需可校验;禁止短码/别名;必须带版本与锚点。)


XIII. 本章合规自检


版权与许可(CC BY 4.0)

版权声明:除另有说明外,《能量丝理论》(含文本、图表、插图、符号与公式)的著作权由作者(“屠广林”先生)享有。
许可方式:本作品采用 Creative Commons 署名 4.0 国际许可协议(CC BY 4.0)进行许可;在注明作者与来源的前提下,允许为商业或非商业目的进行复制、转载、节选、改编与再分发。
署名格式(建议):作者:“屠广林”;作品:《能量丝理论》;来源:energyfilament.org;许可证:CC BY 4.0。

首次发布: 2025-11-11|当前版本:v5.1
协议链接:https://creativecommons.org/licenses/by/4.0/