目录文档-技术白皮书44-EFT.WP.Data.ModelCards v1.0

第13章 鲁棒性、偏移与对抗性


I. 章节目的与范围

,涵盖分布偏移与失效模式、对抗性评测设置与阈值、线上稳健性与回放一致性、指标与报告格式;并确保与《任务与 I/O》《训练数据与采样绑定》《预处理与特征工程》《评测协议与指标》《校准与不确定度》及计量章一致。规范性定义固化模型卡中 robustness 的

II. 字段与结构(规范性)

robustness:

shift_tests: # 合成偏移/扰动

- {name:"snr_drop", severity:[3,6,9], policy:"additive-noise"}

- {name:"time_jitter", ms:[5,10,20], policy:"shuffle-window"}

- {name:"spec_notch", bands:[["0.3","0.5"],["0.6","0.7"]], unit:"fraction"}

natural_shifts: # 自然域偏移(设备/地域/季节/域)

axes: ["device","region","season"]

splits: ["val","test"]

adversarial: # 对抗性评测(如启用)

enabled: false

threat_model: "whitebox|blackbox|transfer"

norm: "Linf|L2|L1"

epsilon: 0.01

steps: 10

restarts: 1

targeted: false

metrics: # 稳健性指标

primary: ["Δ_rel","acc_robust","auc_robust"]

curves: ["acc-vs-ε","acc-vs-SNR","acc-vs-mask"]

thresholds: # 阈值(阻断/预警)

drop_rel_max: 0.10 # 最大允许相对降幅

acc_robust_min: 0.80 # 指定偏移下的最小稳健准确率

ece_max_under_shift: 0.05 # 偏移下校准漂移上限

online_consistency: # 线上一致性(shadow/canary)

shadow_mode: true

window: "7d"

drift_monitors: ["drift_kl","psi"]

alert_rules:

- {name:"robust_drop", rule:"Δ_rel>0.10 for 60m", severity:"high"}

reporting:

table_axes: ["shift","severity","metric"]

include_ci: true # 指标配 95% 置信区间

significance: {test:"bootstrap", alpha:0.05}

notes?: "<non-normative>"


III. 合成偏移(定义与控制)


IV. 自然域偏移(In-the-Wild)


V. 对抗性评测(如启用)


VI. 指标与阈值


VII. 线上稳健性与回放一致性


VIII. 计量与单位

  1. 对时间/频率/能耗/性能等指标声明单位并通过 check_dim 校核。
  2. 当稳健性涉及路径依赖量时,登记 delta_form、路径 gamma(ell) 与测度 d ell;T_arr 使用以下两种等价式之一:
    • T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )
    • T_arr = ( ∫ ( n_eff / c_ref ) d ell )。

IX. 机器可读片段(可直接嵌入)

robustness:

shift_tests:

- {name:"snr_drop", severity:[3,6,9], policy:"additive-noise"}

- {name:"time_jitter", ms:[5,10,20], policy:"shuffle-window"}

- {name:"spec_notch", bands:[["0.3","0.5"],["0.6","0.7"]], unit:"fraction"}

natural_shifts: {axes:["device","region"], splits:["val","test"]}

adversarial: {enabled:false, threat_model:"whitebox", norm:"Linf", epsilon:0.01, steps:10, restarts:1, targeted:false}

metrics: {primary:["Δ_rel","acc_robust"], curves:["acc-vs-ε","acc-vs-SNR"]}

thresholds: {drop_rel_max:0.10, acc_robust_min:0.80, ece_max_under_shift:0.05}

online_consistency:

shadow_mode: true

window: "7d"

drift_monitors: ["drift_kl","psi"]

alert_rules: [{name:"robust_drop", rule:"Δ_rel>0.10 for 60m", severity:"high"}]

reporting: {table_axes:["shift","severity","metric"], include_ci:true, significance:{test:"bootstrap", alpha:0.05}}


X. 导出清单与审计轨

export_manifest:

artifacts:

- {path:"robustness/summary.csv", sha256:"..."}

- {path:"robustness/acc_vs_eps.csv", sha256:"..."}

- {path:"robustness/acc_vs_snr.csv", sha256:"..."}

- {path:"robustness/calibration_under_shift.csv", sha256:"..."}

- {path:"robustness/alert_rules.yaml", sha256:"..."}

references:

- "EFT.WP.Core.DataSpec v1.0:EXPORT"

- "EFT.WP.Core.Metrology v1.0:check_dim"

可校验且与模型卡字段一致。必须稳健性表格/曲线与告警配置

XI. 本章合规自检


版权与许可(CC BY 4.0)

版权声明:除另有说明外,《能量丝理论》(含文本、图表、插图、符号与公式)的著作权由作者(“屠广林”先生)享有。
许可方式:本作品采用 Creative Commons 署名 4.0 国际许可协议(CC BY 4.0)进行许可;在注明作者与来源的前提下,允许为商业或非商业目的进行复制、转载、节选、改编与再分发。
署名格式(建议):作者:“屠广林”;作品:《能量丝理论》;来源:energyfilament.org;许可证:CC BY 4.0。

首次发布: 2025-11-11|当前版本:v5.1
协议链接:https://creativecommons.org/licenses/by/4.0/